Calculate the reactions at the supports of a beam
1. A beam is in equilibrium when it is stationary relative to an inertial reference frame. The following conditions are satisfied when a beam, acted upon by a system of forces and moments, is in equilibrium:
ΣFx = 0: P1*cos(45) + HA = 0
ΣMA = 0: The sum of the moments about a point A is zero:
- P1*sin(45)*2 + q1*3.5*(2 - 3.5/2) - P2*4.5 + M1 + RB*7 = 0
ΣMB = 0: The sum of the moments about a point B is zero:
- P1*sin(45)*9 + q1*3.5*(9 - 3.5/2) - RA*7 + P2*2.5 + M1 = 0
2. Solve this system of equations:
HA = - P1*cos(45) = - 5*0.7071 = -3.54 (kN)
Calculate reaction of roller support about point B:
RB = ( P1*sin(45)*2 - q1*3.5*(2 - 3.5/2) + P2*4.5 - M1) / 7 = ( 5*sin(45)*2 - 10*3.5*(2 - 3.5/2) + 5*4.5 - 10) / 7 = 1.55 (kN)
Calculate reaction of pin support about point A:
RA = ( - P1*sin(45)*9 + q1*3.5*(9 - 3.5/2) + P2*2.5 + M1) / 7 = ( - 5*sin(45)*9 + 10*3.5*(9 - 3.5/2) + 5*2.5 + 10) / 7 = 34.92 (kN)
3. The sum of the forces is zero: ΣFy = 0: P1*sin(45) - q1*3.5 + RA - P2 + RB = 5*sin(45) - 10*3.5 + 34.92 - 5 + 1.55 = 0
Draw diagrams for the beam
First span of the beam: 0 ≤ x1 < 1Loads on this span is not specified.
Second span of the beam: 1 ≤ x2 < 3Determine the equations for the axial force (N):
N(x2) = - P1*cos(45)
N2(1) = - 5*0.7071 = -3.54 (kN)
N2(3) = - 5*0.7071 = -3.54 (kN)
Determine the equations for the shear force (Q):
Q(x2) = P1*sin(45) - q1*(x2 - 1)
Q2(1) = 3.54*sin(45) - 10*(1 - 1) = 3.54 (kN)
Q2(3) = 3.54*sin(45) - 10*(3 - 1) = -16.46 (kN)
The value of Q on this span that crosses the horizontal axis. Intersection point:
x = 0.35
Determine the equations for the bending moment (M):
M(x2) = P1*(x2 - 1)*sin(45) - q1*(x2 - 1)2/2
M2(1) = 5*(1 - 1)*sin(45) - 10*(1 - 1)2/2 = 0 (kN*m)
M2(3) = 5*(3 - 1)*sin(45) - 10*(3 - 1)2/2 = -12.93 (kN*m)
Local extremum at the point x = 0.35:
M2(1.35) = 5*(1.35 - 1)*sin(45) - 10*(1.35 - 1)2/2 = 0.63 (kN*m)
Third span of the beam: 3 ≤ x3 < 4.5Determine the equations for the axial force (N):
N(x3) = - P1*cos(45) + HA
N3(3) = - 5*0.7071 + 3.54 = 0 (kN)
N3(4.50) = - 5*0.7071 + 3.54 = 0 (kN)
Determine the equations for the shear force (Q):
Q(x3) = P1*sin(45) - q1*(x3 - 1) + RA
Q3(3) = 3.54*sin(45) - 10*(3 - 1) + 34.92 = 18.45 (kN)
Q3(4.50) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 = 3.45 (kN)
Determine the equations for the bending moment (M):
M(x3) = P1*(x3 - 1)*sin(45) - q1*(x3 - 1)2/2 + RA*(x3 - 3)
M3(3) = 5*(3 - 1)*sin(45) - 10*(3 - 1)2/2 + 34.92*(3 - 3) = -12.93 (kN*m)
M3(4.50) = 5*(4.50 - 1)*sin(45) - 10*(4.50 - 1)2/2 + 34.92*(4.50 - 3) = 3.50 (kN*m)
Fourth span of the beam: 4.5 ≤ x4 < 7.5Determine the equations for the axial force (N):
N(x4) = - P1*cos(45) + HA
N4(4.50) = - 5*0.7071 + 3.54 = 0 (kN)
N4(7.50) = - 5*0.7071 + 3.54 = 0 (kN)
Determine the equations for the shear force (Q):
Q(x4) = P1*sin(45) - q1*(4.5 - 1) + RA
Q4(4.50) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 = 3.45 (kN)
Q4(7.50) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 = 3.45 (kN)
Determine the equations for the bending moment (M):
M(x4) = P1*(x4 - 1)*sin(45) - q1*(4.5 - 1)*[(x4 - 4.50) + (4.50 - 1)/2] + RA*(x4 - 3)
M4(4.50) = 5*(4.50 - 1)*sin(45) - 10*3.5*(0 + 1.75) + 34.92*(4.50 - 3) = 3.50 (kN*m)
M4(7.50) = 5*(7.50 - 1)*sin(45) - 10*3.5*(3 + 1.75) + 34.92*(7.50 - 3) = 13.86 (kN*m)
5th span of the beam: 7.5 ≤ x5 < 9Determine the equations for the axial force (N):
N(x5) = - P1*cos(45) + HA - P2
N5(7.50) = - 5*0.7071 + 3.54 - 5 = 0 (kN)
N5(9) = - 5*0.7071 + 3.54 - 5 = 0 (kN)
Determine the equations for the shear force (Q):
Q(x5) = P1*sin(45) - q1*(4.5 - 1) + RA - P2
Q5(7.50) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 - 5 = -1.55 (kN)
Q5(9) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 - 5 = -1.55 (kN)
Determine the equations for the bending moment (M):
M(x5) = P1*(x5 - 1)*sin(45) - q1*(4.5 - 1)*[(x5 - 4.50) + (4.50 - 1)/2] + RA*(x5 - 3) - P2*(x5 - 7.5)
M5(7.50) = 5*(7.50 - 1)*sin(45) - 10*3.5*(3 + 1.75) + 34.92*(7.50 - 3) - 5*(7.50 - 7.5) = 13.86 (kN*m)
M5(9) = 5*(9 - 1)*sin(45) - 10*3.5*(4.50 + 1.75) + 34.92*(9 - 3) - 5*(9 - 7.5) = 11.55 (kN*m)
6th span of the beam: 9 ≤ x6 < 10Determine the equations for the axial force (N):
N(x6) = - P1*cos(45) + HA - P2
N6(9) = - 5*0.7071 + 3.54 - 5 = 0 (kN)
N6(10) = - 5*0.7071 + 3.54 - 5 = 0 (kN)
Determine the equations for the shear force (Q):
Q(x6) = P1*sin(45) - q1*(4.5 - 1) + RA - P2
Q6(9) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 - 5 = -1.55 (kN)
Q6(10) = 3.54*sin(45) - 10*(4.5 - 1) + 34.92 - 5 = -1.55 (kN)
Determine the equations for the bending moment (M):
M(x6) = P1*(x6 - 1)*sin(45) - q1*(4.5 - 1)*[(x6 - 4.50) + (4.50 - 1)/2] + RA*(x6 - 3) - P2*(x6 - 7.5) - M1
M6(9) = 5*(9 - 1)*sin(45) - 10*3.5*(4.50 + 1.75) + 34.92*(9 - 3) - 5*(9 - 7.5) - 10 = 1.55 (kN*m)
M6(10) = 5*(10 - 1)*sin(45) - 10*3.5*(5.50 + 1.75) + 34.92*(10 - 3) - 5*(10 - 7.5) - 10 = 0 (kN*m)
Solved by BEAMGURU.COM